Chronic lymphocytic leukemia (CLL) is a heterogenous disease with an imbalance between apoptosis and cell proliferation. Therefore, the main goal in CLL therapy is to induce apoptosis and effectively support this process in transformed B lymphocytes. In the current study, we have compared differential scanning calorimetry (DSC) profiles of nuclei isolated from CLL cells and normal mononuclear cells exposed to cladribine or fludarabine combined with mafosfamide (CM; FM), and additionally to CM combined with monoclonal antibody-rituximab (RCM) for 48 h, as well as in culture medium only (controls). Under current study, the mononuclear cells from peripheral blood (PBMCs) of healthy individuals have been included. The obtained results have shown the presence of thermal transition at 95 ± 5°C in most of nuclear preparations (92.2 %) isolated from blood of CLL patients. This thermal characteristic parameter was changed after drug exposure, however, to a different extent. These thermal changes were accompanied by the decrease of cell viability, an elevation of apoptosis rate and the changes in expression/proteolysis of poly(ADP-ribose)polymerase-1-main marker of apoptosis. Importantly, in DSC profiles of nuclear preparations of PBMCs from blood of healthy donors exposed to investigated drug combinations and control CLL cells, the lack of such changes was observed. Our results confirmed that DSC technique complemented with other biological approaches could be helpful in tailoring therapy for CLL patients. Keywords Chronic lymphocytic leukemia Á Differential scanning calorimetry Á Anti-leukemic tailored therapy Á Purine analogs Á Mafosfamide Á Rituximab Paweł Góralski and Małgorzata Rogalińska should be considered jointly as the first authors.