Adaptability of high capacity passive optical network (PON) requires the provision of an efficient fault detection and restoration mechanism throughout the network at an acceptable cost. The readily adapted pre-planned protection strategy relies on component duplication, which significantly increases the cost of deployment for PON. Therefore, it is imperative to determine a suitable component that requires high redundancy and determine the impact of protection for that component on feasibility of PON. Five protection architecture including ITU-T 983.1 Type C, single ring, dual ring, tree-and ring-based architectures with hybrid star-ring topology at the optical distribution network (ODN), are considered to evaluate the impact of fiber duplication in terms of capital expenditure (CAPEX), operation expenditure (OPEX), reliability, and support for maximum number of subscribers. Reliability block diagram (RBD) based analysis shows that desirable 5 nines connection availability is provided by each protection architecture and utilization of ring topology avoids duplication of the fiber but effects the number of subscribers. Furthermore, it is observed that OF duplication at ODN is the main contributor to CAPEX. Collectively hybrid protection architectures provide efficient performance and proves to be a feasible solution for the deployment of survivable PONs at the access domain.