2023
DOI: 10.1109/access.2023.3247189
|View full text |Cite
|
Sign up to set email alerts
|

Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection in Online Judges

Abstract: Online judges (OJ) are a popular tool to support programming learning. However, one major issue with OJs is that problems are often put together without any associated meta-information that could, for example, be used to help classify problems. This meta-information could be extremely valuable to help users quickly find what types of problems they need most. To face this problem, several OJ administrators have recently begun manually annotating the topics of problems based on computer science-related subjects,… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 41 publications
0
0
0
Order By: Relevance