Synthetic receptor binding motif mimicking bone morphogenetic protein-2 (BMP-2) was covalently linked to titanium (Ti) surfaces through a chemical conjugation process. The composition and properties of surface-modified Ti were investigated by XPS as well as by measuring surface radioactivity. In vitro tests were conducted with osteoblast-like MC3T3-E1 cells to assess cell attachment, morphology, and expression of osteogenic marker in the cells grown on modified Ti surfaces. In addition, in vivo experiments involved implants in mandibular bone defects of beagles to evaluate the effect of surface modification on bone regeneration. Results of XPS measurements showed a complete and homogeneous peptide overlayer on the Ti surfaces; the content was further measured by gamma counting. Biological evaluations showed that the biochemically modified Ti samples were active in terms of cell attachment behavior. The MC3T3-E1 cell growth rate, marker protein expression, and alkaline phosphatase production of the peptide-modified surfaces were all higher than those of control Ti. Importantly, the implants in the canine mandibles showed significant increase of bone growth when modified with bioactive peptide, thereby confirming that biochemical modifications of Ti surfaces can enhance the rate of bone healing as compared with untreated Ti surfaces.