The vehicle front-end module (FEM) is an integrated system in which major modules are assembled in the front of the vehicle. Among the FEM components, a carrier occupies the largest volume and weight. In recent years, the requirements of a carrier are increasing due to the diversification of vehicle size, enlargement of headlight, and so on. So, recent requirements are difficult to satisfy with the existing design. Therefore, this study was attempted to solve the current problems by applying only plastic, not the existing hybrid type, to the most important Member-radiator Support Upper (MRSU) of the carrier. As a process, topology optimization was performed using Altair’s Optistruct, thereby implementing a new concept of MRSU. In addition, the strength analysis was conducted using ABAQUS of Simulia. An initial model and an optimized model were compared and verified to determine the validity of optimization. After that, a prototype of carrier was manufactured and the final verification was conducted through HLR test. As a result, the strength and weight of the carrier were improved by about 24% and 15% respectively. In addition, the waste-generating process was improved, resulting in a development time reduction of approximately 32%.