Energy management requires reliable tools to support decisions aimed at optimising consumption. Advances in data-driven models provide techniques like Non-Intrusive Load Monitoring (NILM), which estimates the energy demand of appliances from total consumption. Common single-target NILM approaches perform energy disaggregation by using separate learned models for each device. However, the use of single-target systems in real scenarios is computationally expensive and can obscure the interpretation of the resulting feedback. This study assesses a conditioned deep neural network built upon a Fully Convolutional Denoising AutoEncoder (FCNdAE) as multi-target NILM model. The network performs multiple disaggregations using a conditioning input that allows the specification of the target appliance. Experiments compare this approach with several single-target and multi-target models using public residential data from households and non-residential data from a hospital facility. Results show that the multi-target FCNdAE model enhances the disaggregation accuracy compared to previous models, particularly in non-residential data, and improves computational efficiency by reducing the number of trainable weights below 2 million and inference time below 0.25 s for several sequence lengths. Furthermore, the conditioning input helps the user to interpret the model and gain insight into its internal behaviour when predicting the energy demand of different appliances.