Among ABO3 perovskites, SrMoO3 possesses the lowest electrical resistivity in addition to having high optical transparency in the visible spectrum. This unusual combination of material properties allows it to be a potential replacement for indium tin oxide as a transparent electrode. Thus far, its thin film synthesis has been challenging and limited primarily to pulsed laser deposition and sputtering. Here, we report the growth of SrMoO3 thin films by suboxide molecular beam epitaxy. We demonstrate that optically transparent and conductive SrMoO3 films can be grown by supplying elemental strontium via a conventional effusion cell and thermally evaporating MoO3 pellets as a molybdenum source. The direct supply of a molecular oxygen flux to the MoO3 charge was utilized to prevent reduction to lower oxidation states of the charge to ensure congruent evaporation and, thus, a stable MoO3 molecular flux. The optimal growth conditions were found by varying the Sr to MoO3 flux ratio determined from quartz crystal microbalance measurements and monitoring the growth by reflection high-energy electron diffraction. SrMoO3 thin films with 21 nm thickness were confirmed to be optically transparent with transmission between 75 and 91% throughout the visible spectral range and electrically conducting with a room temperature resistivity of 5.0 × 10−5 Ω cm. This realization of this thin film growth method can be further expanded to the growth of other transition metal perovskites in which cations have extremely low vapor pressure and cannot be evaporated in elemental forms.