Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To access the theoretically high energy density of sulfide‐based all‐solid‐state lithium batteries (ASSLBs), a thin and robust sulfide electrolyte membrane is essential. Given the pivotal role of binder in preserving the structural integrity and interfacial stability of sulfide electrolytes upon cycling, it is desired to integrate binding capability, toughness, and stiffness into one binder, yet remains difficult. Herein, this challenge is addressed using a nanofiber‐reinforced strategy in the solvent‐free dry‐film process. A coaxial polyvinylidene poly(vinylidene fluoride‐co‐hexafluoropropylene) @ thermoplastic polyurethane (PVDF‐HFP@TPU) nanofiber binder is embedding into a Li6PS5Cl (LPSCl) matrix to obtain a sulfide thin‐layer (LPSCl‐P@T). During hot calendering of the sulfide‐binder mixture, the PVDF‐HFP shell layer melts and tightly binds LPSCl particles. The underlying TPU core layer, which maintains the fibrous structure, reinforces the structural stability of the membrane. Particularly, the fiber‐matrix connection is improved with the assistance of the molten PVDF‐HFP, collectively contributing to the effective dissipation of the mechanical stress. Controlled fusion of the core‐shell nanofiber also leads to enhanced interfacial anchoring of the cathode and electrolyte. The assembled cells with LPSCl‐P@T deliver stable cycling performances. The PVDF‐HFP@TPU nanofiber binder overcomes the long‐existing incompatible problems between binder toughness and stiffness, and shows promises in developing high‐performance sulfide‐based ASSLBs.
To access the theoretically high energy density of sulfide‐based all‐solid‐state lithium batteries (ASSLBs), a thin and robust sulfide electrolyte membrane is essential. Given the pivotal role of binder in preserving the structural integrity and interfacial stability of sulfide electrolytes upon cycling, it is desired to integrate binding capability, toughness, and stiffness into one binder, yet remains difficult. Herein, this challenge is addressed using a nanofiber‐reinforced strategy in the solvent‐free dry‐film process. A coaxial polyvinylidene poly(vinylidene fluoride‐co‐hexafluoropropylene) @ thermoplastic polyurethane (PVDF‐HFP@TPU) nanofiber binder is embedding into a Li6PS5Cl (LPSCl) matrix to obtain a sulfide thin‐layer (LPSCl‐P@T). During hot calendering of the sulfide‐binder mixture, the PVDF‐HFP shell layer melts and tightly binds LPSCl particles. The underlying TPU core layer, which maintains the fibrous structure, reinforces the structural stability of the membrane. Particularly, the fiber‐matrix connection is improved with the assistance of the molten PVDF‐HFP, collectively contributing to the effective dissipation of the mechanical stress. Controlled fusion of the core‐shell nanofiber also leads to enhanced interfacial anchoring of the cathode and electrolyte. The assembled cells with LPSCl‐P@T deliver stable cycling performances. The PVDF‐HFP@TPU nanofiber binder overcomes the long‐existing incompatible problems between binder toughness and stiffness, and shows promises in developing high‐performance sulfide‐based ASSLBs.
Solvent‐free manufacturing is crucial for fabricating high‐performance sulfide‐electrolyte‐based all‐solid‐state lithium batteries (ASSLBs), with advantages including side reaction inhibition, less contamination, and practical scalability. However, the fabricated sulfide electrolytes commonly suffer from brittleness, limited ion transport, and unsatisfactory interfacial stability due to the uncontrolled dispersion of the sulfide particles within the polymer binder matrix. Herein, a “solid‐to‐liquid” phase transition strategy is reported to fabricate flexible Li6PS5Cl (LPSCl) electrolytes. The polycaprolactone (PCL)‐based binder (PLI) with phase‐transition characteristics fills the gap of LPSCl particles and tightly grafts on the particle surface via ion‐dipole interaction, bringing a thin and compact electrolyte membrane (80 µm). The simultaneously high Li‐ion conducting and electron insulating nature of PLI binder facilitates Li‐ion transport and ensures good interfacial stability between electrolyte and anode. Consequently, the sulfide electrolyte membrane exhibits high ionic conductivity (8.5 × 10−4 S cm−1), enabling symmetric and full cells with 10 and 2.5 times longer cycling life compared with that of the cells with pristine LPSCl electrolyte, respectively. The demonstrated strategy is versatile and can be extended to ethylene vinyl acetate copolymer (EVA) that also brings enhanced electrochemical performance. The thin sulfide electrolyte with high interfacial stability potentially facilitates dendrite‐free ASSLBs with high energy density.
All‐solid‐state Li metal batteries (ASSLMBs) using inorganic solid‐state electrolytes (ISEs) are considered promising energy storage technologies owing to their intrinsic safety and high energy density. Nevertheless, one critical challenge confronting ASSLMBs is the inability of the ISEs to prevent Li dendrite growth, which has not yet been fully addressed. Herein, general design principles of artificial solid electrolyte interphases (ASEI) for suppressing Li dendrites in ASSLMBs are proposed by systematically exploring the formation mechanism of Li dendrites. Subsequently, a tailored LiF‐Li3N ASEI is constructed to inspect the Li‐dendrite‐free design principles. The LiF‐Li3N modified Li (LFN‐Li) can effectively inhibit the side reactions and suppress the growth of Li dendrites, thus boosting the critical current densities of Li10GeP2S12 (LGPS) to a record‐high value of 3.4 mA cm−2. Furthermore, the LFN‐Li/LGPS/LFN‐Li can cycle stably for over 5000 h at 0.2 mA cm−2. Crucially, the versatility of the designed ASEI is highlighted as it ensures outstanding long‐term stability in symmetric cells featuring oxide Li1.3Al0.3Ti1.7(PO)3 or halide Li2ZrCl6 ISEs. As a result, the ASEI enables LiNi0.8Mn0.1Co0.1O2/LGPS/LFN‐Li and FeS2/LGPS/LFN‐Li cells to achieve high discharge‐specific capacities and desirable cyclic stability at room temperature. The generalized ASEI design principles rationalize the development of high‐energy ASSLBMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.