Abstract. The Alps are a key water resource for central Europe, providing water for drinking, agriculture, and hydropower production. Thus, understanding runoff generation processes of Alpine streams is important for sustainable water management. It is currently unclear how much streamflow is derived from old water stored in the subsurface, versus more recent precipitation that reaches the stream via near-surface quick flow processes. It is also unclear how this partitioning varies across different Alpine catchments in response to hydroclimatic forcing and catchment characteristics. Here, we use stable water isotope time series in precipitation and streamflow to quantify the young water fractions Fyw (i.e., the fraction of water younger than approximately 2–3 months) and new water fractions Fnew (here, the fraction of water younger than one month) in streamflow from 32 Alpine catchments. We contrast these measures of water age between summer and winter and between wet and dry periods, and correlate them with hydroclimatic variables and physical catchment properties. New water fractions varied from 9.6 % in rainfall-dominated catchments to 3.5 % in snow-dominated catchments (mean across all catchments = 7.1 %). Young water fractions were approximately twice as large (reflecting their longer time scale), varying from 17.6 % in rainfall-dominated catchments to 10.1 % in snow-dominated catchments (mean across all catchments = 14.3 %). New water fractions were negatively correlated with catchment size (Spearman rank correlation rS = 0.38), q95 baseflow (rS = -0.36), catchment elevation (rS = 0.37), total catchment relief (rS = -0.59), and the fraction of slopes steeper 40° (rS = -0.48). Large new water fractions, implying faster transmission of precipitation to streamflow, are more prevalent in small catchments, at low elevations, with small elevation gradients, and with large forest cover (rS = 0.36). New water fractions averaged 3.3 % following dry antecedent conditions, compared to 9.3 % after wet antecedent conditions. Our results quantify how hydroclimatic and physical drivers shape the partitioning of old and new waters across the Alps, thus indicating which landscapes transmit recent precipitation more readily to streamflow, and which landscapes tend to retain water over longer periods. Our results further illustrate how new water fractions may find relationships that remained invisible with young water fractions.