User identification in decentralized systems is a demanding task. Identification systems should work resiliently and have efficient performance. Moreover, identification systems should protect the data that they must store against hackers and saboteurs. Keeping a system with decentralized identification without any intervention in the middle has attracted attention to improve earlier centralized identification systems. Decentralized Identifiers (DIDs) constitute a solution for identification divided into different modules. The verifiable data registry is one of the main parts of this technology, which is distributed storage of identity properties. We analyze the decentralized identification data registry and compare the performance of verifiable data registry based on blockchain and the Distributed Hash Table (DHT) on different scales of systems. Our evaluation results show that DHT has better performance. Furthermore, a model based on DHT shows that in addition to immutable storage and faster query time, it makes systems handle or search in data storage with lower searching time compared to Ethereum Blockchain as another immutable secure technology. Finally, our results show that DHT is a better solution than other models in different scenarios. Although blockchain has promising results on a small scale, it still has problems with storage and query time in largescale systems.