2018 Second IEEE International Conference on Robotic Computing (IRC) 2018
DOI: 10.1109/irc.2018.00057
|View full text |Cite
|
Sign up to set email alerts
|

Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
3
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 6 publications
0
3
0
2
Order By: Relevance
“…En particular, las métricas para evaluar las funcionalidades de los robots móviles se han basado en la precisión, la funcionalidad y el consumo de recursos (Singh Gill et al, 2019). Aplicar un buen conjunto de criterios de desempeño permite: optimizar parámetros de los algoritmos, probar el desempeño de la navegación para diferentes entornos, optimizar la planificación de movimientos, comparar cuantitativamente diferentes algoritmos de control, apoyar el desarrollo de los algoritmos y ayudar a decidir sobre los ajustes necesarios entre diversos aspectos del funcionamiento del sistema (Ho et al, 2018).…”
Section: Introductionunclassified
“…En particular, las métricas para evaluar las funcionalidades de los robots móviles se han basado en la precisión, la funcionalidad y el consumo de recursos (Singh Gill et al, 2019). Aplicar un buen conjunto de criterios de desempeño permite: optimizar parámetros de los algoritmos, probar el desempeño de la navegación para diferentes entornos, optimizar la planificación de movimientos, comparar cuantitativamente diferentes algoritmos de control, apoyar el desarrollo de los algoritmos y ayudar a decidir sobre los ajustes necesarios entre diversos aspectos del funcionamiento del sistema (Ho et al, 2018).…”
Section: Introductionunclassified
“…To guarantee energy awareness, our approach uses optimal control and heuristics where both the paths and schedules variations are trajectories, varying between given bounds (i.e., physical constraints of the robot and computing hardware, quality of service, desired quality of the coverage, etc.). Past planning-scheduling studies also employ optimization techniques [11], [12], [17], [21]; some use a greedy approach [7], [18], [22]; whereas others use reinforcement learning-based approaches [10], [27]. Hybrid approaches [17] are also available, where the techniques are mixed.…”
Section: Introductionmentioning
confidence: 99%
“…However, compared with the traditional cloud computing model, due to the many new key technologies and usage methods brought about by fog computing, there may be concurrent failure of multimedia services [5] and other complex and difficult to grasp, such as fog node location information leakage [6], interruption of multimedia transmission network, heterogeneous network Cooperative errors will affect the efficiency of the whole system. In recent years, academia and industry have proposed mechanisms or methods to enhance the performance of multimedia service systems in different scenarios [7][8][9][10][11][12][13][14][15][16][17][18][19]. However, how to properly combine fog computing and multimedia services to meet the needs of large-scale concurrent multimedia applications requires more reliable, feasible system models and in-depth computing support algorithms.…”
Section: Introductionmentioning
confidence: 99%
“…About multimedia applications, computing and communication, article [7] researched the hierarchical parallelization of Multi-coloring algorithms for the most useful preconditioners for the conjugate gradient method, namely Block IC Preconditioners. In article [8], a Multi-mission QoS and Energy Manager was indicated for satisfying the increasing demand on the autonomy of mobile robotic platforms requires adaptive on-line decisions for Autonomous Mobile Robots. In [9], to solve the imbalance between power efficiency and performance, the authors studied the reconfigurable architecture by designing an acceleration architecture namely deep neural architecture for Neural Approximation in Multimedia Computing.…”
Section: Introductionmentioning
confidence: 99%