Metrics & MoreArticle Recommendations CONSPECTUS: Buckminsterfullerene, C 60 , was discovered through a prominent mass peak containing 60 atoms produced from laser vaporization of graphite, driven by Kroto's interest in understanding the formation mechanisms of carbon-containing molecules in space. Inspired by the geodesic dome-shaped architecture designed by Richard Buckminster Fuller, after whom the particle was named, C 60 was found to have a football-shaped structure comprising 20 hexagons and 12 pentagons. It sparked worldwide interest in understanding this new carbon allotrope, resulting in the awarding of the Noble Prize in Chemistry to Smalley, Kroto, and Curl in 1996.Intrinsically, C 60 is an exceptional species because of its high stability and electronaccepting ability and its structural tunability by decorating or substituting either on its exterior surface or interior hollow cavity. For example, metal-decorated fullerene complexes have found important applications ranging from superconductivity, nanoscale electronic devices, and organic photovoltaic cells to catalysis and biomedicine. Compared to the large body of studies on atoms and molecules encapsulated by C 60 , studies on the exteriorly modified fullerenes, i.e., exohedral fullerenes, are scarcer. Surprisingly, to date, uncertainty exists about a fundamental question: what is the preferable exterior binding site of different kinds of single atoms on the C 60 surface?In recent years, we have developed an experimental protocol to synthesize the desired fullerene−metal clusters and to record their infrared spectra via messenger-tagged infrared multiple photon dissociation spectroscopy. With complementary quantum chemical calculations and molecular dynamics simulations, we determined that the most probable binding site of a metal, specifically a vanadium cation, on C 60 is above a pentagonal center in an η 5 fashion. We explored the bonding nature between C 60 and V + and revealed that the high thermal stability of this cluster originates from large orbital and electrostatic interactions. Through comparing the measured infrared spectra of [C 60 -Metal] + with the observational Spitzer data of several fullerene-rich planetary nebulae, we proposed that the complexes formed by fullerene and cosmically abundant metals, for example, iron, are promising carriers of astronomical unidentified spectroscopic features. This opens the door for a real consideration of Kroto's 30-year-old hypothesis that complexes involving cosmically abundant elements and C 60 exhibit strong charge-transfer bands, similar to those of certain unidentified astrophysical spectroscopic features. We compiled a VibFullerene database and extracted a set of vibrational frequencies and intensities for fullerene derivatives to facilitate their potential detection by the James Webb Space Telescope. In addition, we showed that upon infrared irradiation C 60 V + can efficiently catalyze water splitting to generate H 2 . This finding is attributed to the novel geometric-electronic effects of...