2020
DOI: 10.3390/e22080866
|View full text |Cite
|
Sign up to set email alerts
|

Towards a Universal Measure of Complexity

Abstract: Recently, it has been argued that entropy can be a direct measure of complexity, where the smaller value of entropy indicates lower system complexity, while its larger value indicates higher system complexity. We dispute this view and propose a universal measure of complexity that is based on Gell-Mann’s view of complexity. Our universal measure of complexity is based on a non-linear transformation of time-dependent entropy, where the system state with the highest complexity is the most distant from all the st… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
8
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
2
1

Relationship

0
10

Authors

Journals

citations
Cited by 13 publications
(8 citation statements)
references
References 55 publications
0
8
0
Order By: Relevance
“…These studies typically assume a non-logarithmic entropy, leading to power law distributions (e.g., Zipf-Mandelbrot distributions [6,7,8]) instead of exponential distributions of energy. Tsallis statistical mechanics falls into this category and it has found many applications throughout the years [11,12,13,14,15,16,17,18,19,20]. On the other hand, not everybody is fully convinced about the validity of such approaches to statistical mechanics [21,22].…”
Section: Statement Of the Problemmentioning
confidence: 99%
“…These studies typically assume a non-logarithmic entropy, leading to power law distributions (e.g., Zipf-Mandelbrot distributions [6,7,8]) instead of exponential distributions of energy. Tsallis statistical mechanics falls into this category and it has found many applications throughout the years [11,12,13,14,15,16,17,18,19,20]. On the other hand, not everybody is fully convinced about the validity of such approaches to statistical mechanics [21,22].…”
Section: Statement Of the Problemmentioning
confidence: 99%
“…We wish to highlight the close relationship between the micro and the macro, specifically showing how and where models from physics applied to economic and financial entities bring about the emergent properties that make the field of econophysics so challenging and interesting. From the early insights and models [ 13 ], their extensions [ 14 , 15 ] through what has become known as stylized facts [ 16 ] of the financial markets, including behaviour of prices and their volatility, and to the inherent connectivity driving global risk [ 17 ], tools and methods from physics and complexity sciences [ 18 , 19 ], such as phase transitions [ 2 , 3 , 20 ], fractal and multifractal analysis [ 21 ] and network science [ 22 , 23 , 24 , 25 ], all help to understand the intricacies of our economic and financial lives. The following sections will move back and forth between the micro and macro perspective highlighting some recent research driving econophysics forward.…”
Section: Introductionmentioning
confidence: 99%
“…Quantifying the complexity level from realizations of the system’s dynamics, i.e., time series, is still a challenge. While different interpretations of complexity may be assumed, entropy certainly plays a role in the estimation of time series complexity [ 2 , 3 ].…”
Section: Introductionmentioning
confidence: 99%