“…The most common metaheuristic procedures, such as Simulating Annealing [6], Tabu search [12], Random Search, or many types of nature-inspired optimization methods, such as evolutionary [7,28,29] and genetic algorithms [18], ant colony optimization [30], or particle swarm optimization [16,19,31], can provide acceptable solutions near the optimum. Although metaheuristics are advantageous in the sense of the solution quality and robustness, they do not guarantee solution optimality [1,27], they depend on the choice of method's parameters [11], and they are often too complex to implement computationally in a real-time system [2]. To enhance the efficiency of metaheuristic, a hybrid approach based on combining different methods has been often proposed by several authors in their works [9,19,32,33].…”