2019
DOI: 10.1016/j.eswa.2018.11.026
|View full text |Cite
|
Sign up to set email alerts
|

Towards an accessible use of smartphone-based social networks through brain-computer interfaces

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
75
0
8

Year Published

2019
2019
2024
2024

Publication Types

Select...
3
3
2

Relationship

2
6

Authors

Journals

citations
Cited by 37 publications
(83 citation statements)
references
References 40 publications
0
75
0
8
Order By: Relevance
“…Concerning the optimal scale, it is equivalent to reducing the sampling rate of the EEG signal by half before applying the SampEn algorithm. This procedure can be addressed as a feature-extraction stage that is common in P300-based BCI studies [ 3 , 5 , 6 , 8 , 9 , 16 , 17 , 18 , 19 , 20 ].…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Concerning the optimal scale, it is equivalent to reducing the sampling rate of the EEG signal by half before applying the SampEn algorithm. This procedure can be addressed as a feature-extraction stage that is common in P300-based BCI studies [ 3 , 5 , 6 , 8 , 9 , 16 , 17 , 18 , 19 , 20 ].…”
Section: Discussionmentioning
confidence: 99%
“…As indicated in Table 2 , the maximal computational time of the SampEn algorithm is approximately 197 ms using 15 sequences. Since most P300-based BCI studies use pauses of at least two seconds after each character, the computational cost of the proposed framework is perfectly acceptable [ 6 , 16 , 19 , 37 ].…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Asimismo, el sistema no se ha probado con sujetos con grave discapacidad, la población que presumiblemente se beneficiaría del método. La inclusión de nuevas medidas complementarias basadas en análisis estadístico podría mejorar los resultados de clasificación, y deberían ser estudiadas en el futuro (Martínez-Cagigal et al, 2019). En este estudio únicamente se han analizado los resultados de clasificación a la hora de detectar el estado de control del usuario.…”
Section: Discussionunclassified
“…OSRD asigna y = 1 si se detecta que el usuario estaba atendiendo a los estímulos de la matriz de comandos, o y = 0 en caso contrario. El método utilizado para la clasificación de características es el análisis discriminante lineal (linear discriminant analysis, LDA), debido a su amplio uso en sistemas BCI (Martínez-Cagigal et al, 2019;Pinegger et al, 2015;Wolpaw & Wolpaw, 2012).…”
Section: Clasificación De Característicasunclassified