As urban atmospheric conditions are tightly connected to citizens' quality of life, the concept of efficient environmental decision support systems becomes highly relevant. However, the scale and heterogeneity of the involved data, together with the need for associating environmental information with physical reality, increase the complexity of the problem. In this work, we capitalize on the semantic expressiveness of ontologies to build a framework that uniformly covers all phases of the decision making process: from structuring and integration of data, to inference of new knowledge. We define a simplified ontology schema for representing the status of the environment and its impact on citizens' health and actions. We also implement a novel ontology-and rulebased reasoning mechanism for generating personalized recommendations, capable of treating differently individuals with diverse levels of vulnerability under poor air quality conditions. The overall framework is easily adaptable to new sources and needs.