Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The dynamic interplay between anthropogenic activities and biodiversity conservation necessitates a nuanced understanding of habitat change, especially in contexts marked by transitions from grasslands to forested areas. This investigation utilised three threatened butterfly species—the Marsh Fritillary, Apollo, and Large Blue—as models to explore how grassland associated species respond to altered environmental conditions. The methodology encompassed extensive field surveys and statistical analyses with ecological niche modelling to determine their current and future distributions on the Island of Gotland. The species were surveyed under distinct years from 2017 to 2020 in a total of 3333 hectares in a 6000 hectare area—the Marsh Fritillary in 2017 (1232 hectares), Apollo in 2019 (2346 hectares), and Large Blue in 2020 (2256 hectares). Results revealed that the estimated current extents of suitable habitats were 49,104 hectares for the Marsh Fritillary (15.6% of the island), 45,646 hectares for Apollo (14.5%), and 33,089 hectares for Large Blue (10.5%). In general, increased forest and shrub cover and decreased heterogeneity negatively affected butterfly occupancy, but each species exhibited unique habitat preferences. The predictive modelling demonstrated that continued succession would reduce the amount of habitats predicted to be suitable and generated alarming forecasts—a twofold increase in forest and shrub cover suggests habitat declines of 41%, 47%, and 65% for the Marsh Fritillary, Apollo, and Large Blue, respectively. Given these findings, proactive measures are imperative for strategically managing these habitats to preserve landscape heterogeneity and accommodate diverse ecological needs. This study is important to conservation management providing, crucial insights amid anthropogenic and ecological changes.
The dynamic interplay between anthropogenic activities and biodiversity conservation necessitates a nuanced understanding of habitat change, especially in contexts marked by transitions from grasslands to forested areas. This investigation utilised three threatened butterfly species—the Marsh Fritillary, Apollo, and Large Blue—as models to explore how grassland associated species respond to altered environmental conditions. The methodology encompassed extensive field surveys and statistical analyses with ecological niche modelling to determine their current and future distributions on the Island of Gotland. The species were surveyed under distinct years from 2017 to 2020 in a total of 3333 hectares in a 6000 hectare area—the Marsh Fritillary in 2017 (1232 hectares), Apollo in 2019 (2346 hectares), and Large Blue in 2020 (2256 hectares). Results revealed that the estimated current extents of suitable habitats were 49,104 hectares for the Marsh Fritillary (15.6% of the island), 45,646 hectares for Apollo (14.5%), and 33,089 hectares for Large Blue (10.5%). In general, increased forest and shrub cover and decreased heterogeneity negatively affected butterfly occupancy, but each species exhibited unique habitat preferences. The predictive modelling demonstrated that continued succession would reduce the amount of habitats predicted to be suitable and generated alarming forecasts—a twofold increase in forest and shrub cover suggests habitat declines of 41%, 47%, and 65% for the Marsh Fritillary, Apollo, and Large Blue, respectively. Given these findings, proactive measures are imperative for strategically managing these habitats to preserve landscape heterogeneity and accommodate diverse ecological needs. This study is important to conservation management providing, crucial insights amid anthropogenic and ecological changes.
This study investigates the ecology of three threatened butterfly species on a 60 km2 site in Gotland, Southeast Sweden, using mark–recapture methods from 2017 to 2020. Nearly 30,000 captures were recorded, with average lifespans of 6 days for Euphydryas aurinia (Lepidoptera: Nymphalidae) and Parnassius apollo (Lepidoptera: Papilionidae) and 2 days for Phengaris arion (Lepidoptera: Lycaenidae). Population size, density and maximum flight distances varied between species, with E. aurinia at 7.2 km, P. apollo at 6.4 km and P. arion at 2.5 km. Movement data showed the lognormal kernel fit better than gamma, negative exponential and half‐normal kernels for distance travelled per time unit across species and sexes. Generalised linear models revealed significant positive density‐dependent emigration and negative density‐dependent immigration in all three species. Despite available suitable habitats, these species face threats from limestone quarry expansions, agricultural intensification, modified forestry practices, natural succession and climate change, highlighting the need for proactive conservation and strategic habitat management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.