The use of ultrasound haptic feedback for mid-air gestures in cars has been proposed to provide a sense of control over the user's intended actions and to add touch to a touchless interaction. However, the impact of ultrasound feedback to the gesturing hand regarding lane deviation, eyes-off-the-road time (EORT) and perceived mental demand has not yet been measured. This paper investigates the impact of uni-and multimodal presentation of ultrasound feedback on the primary driving task and the secondary gesturing task in a simulated driving environment. The multimodal combinations of ultrasound included visual, auditory, and peripheral lights. We found that ultrasound feedback presented uni-modally and bi-modally resulted in significantly less EORT compared to visual feedback. Our results suggest that multimodal ultrasound feedback for mid-air interaction decreases EORT whilst not compromising driving performance nor mental demand and thus can increase safety while driving. CCS Concepts •Human-centered computing → Haptic devices; Auditory feedback; Gestural input;