2001
DOI: 10.1088/0266-5611/17/4/324
|View full text |Cite
|
Sign up to set email alerts
|

Towards an inverse scattering theory for non-decaying potentials of the heat equation

Abstract: Abstract. The resolvent approach is applied to the spectral analysis of the heat equation with non decaying potentials. The special case of potentials with spectral data obtained by a rational similarity transformation of the spectral data of a generic decaying potential is considered. It is shown that these potentials describe N solitons superimposed by Bäcklund transformations to a generic background. Dressing operators and Jost solutions are constructed by solving a ∂-problem explicitly in terms of the corr… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
82
0
16

Year Published

2001
2001
2022
2022

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 57 publications
(99 citation statements)
references
References 20 publications
1
82
0
16
Order By: Relevance
“…Then the inverse problem is again given by Eqs. (5.20) and (5.21), where the spectral data r(k) are replaced with r(k) + (k + ia)(k + ia) (k − ia)(k − ia) r 0 (k), (6.3) where r(k) is of the type (5.11) and r 0 (k) are the spectral data of the potential u 0 (x) (see [11]). The theory of the heat equation with respect to the nonstationary Schrödinger equation is in some respects simpler and in some other respects unexpectedly more difficult.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Then the inverse problem is again given by Eqs. (5.20) and (5.21), where the spectral data r(k) are replaced with r(k) + (k + ia)(k + ia) (k − ia)(k − ia) r 0 (k), (6.3) where r(k) is of the type (5.11) and r 0 (k) are the spectral data of the potential u 0 (x) (see [11]). The theory of the heat equation with respect to the nonstationary Schrödinger equation is in some respects simpler and in some other respects unexpectedly more difficult.…”
Section: Resultsmentioning
confidence: 99%
“…In terms of the Jost solutions introduced above we can write the kernel of this resolvent obtained in [11] as…”
Section: One-dimensional Potentialmentioning
confidence: 99%
“…This system is a linearized version of the famous integrable system in (2+1)-dimesions (where one of variables is discrete): 2D infinite Toda chain, 6) that is known to have Lax pair…”
Section: Introduction Commutator Identity and Linearized Version Of mentioning
confidence: 99%
“…Тогда, положив по аналогии с (2.2) 5) мы получаем, что в силу (2.4) эта функция удовлетворяет дифференциальному уравнению 6) являющемуся линеаризованной версией нелинейного уравнения, предложенного в [10]. В данном случае коммутативная алгебра коммутирующих потоков, заданных по-средством ad n , порождается двумя присоединенными элементами ad 1 и ad −1 .…”
Section: примеры коммутаторных тождеств на ассоциативных алгебрахunclassified
“…Уравне-ние (3.32) означает, что ν -оператор одевания (преобразования). В [6] было показа-но, что при подстановке (3.27) в (3.29) мы получаем стандартное уравнение обратной задачи для решения Йоста [18], а второй оператор пары Лакса, равно как и диф-ференциальное уравнение для u(x, t) (для Фурье-преобразования u(p, t)), следуют из (3.28) и (3.29). Мы не воспроизводим здесь эти детали.…”
Section: а к погребковunclassified