The automatic neuron reconstruction is important since it accelerates the collection of 3D neuron models for the neuronal morphological studies. The majority of the previous neuron reconstruction methods only focused on tracing neuron fibres without considering the somatic surface. Thus, topological errors often present around the soma area in the results obtained by these tracing methods. Segmentation of the soma structures can be embedded in the existing neuron tracing methods to reduce such topological errors. In this paper, we present a novel method to segment the soma structures with complex geometry. It can be applied along with the existing methods in a fully automated pipeline. An approximate bounding block is firstly estimated based on a geodesic distance transform. Then the soma segmentation is obtained by evolving the surface with a set of morphological operators inside the initial bounding region. By evaluating the methods against the challenging images released by the BigNeuron project, we showed that the proposed method can outperform the existing soma segmentation methods regarding the accuracy. We also showed that the soma segmentation can be used for enhancing the results of existing neuron tracing methods.