Counter-cations are essential components of polyoxometalates (POMs), which have a distinct influence on the solubility, stabilization, self-assembly, and functionality of POMs. To investigate the roles of cations in the packing of POMs, as a systematic investigation, herein, a series of triol-ligand covalently modified Cu-centered Anderson-Evans POMs with different counter ions were prepared in an aqueous solution and characterized by various techniques including single-crystal X-ray diffraction. Using the strategy of controlling Mo sources, in the presence of triol ligand, NH4+, Cu2+ and Na+ were introduced successfully into POMs. When (NH4)6Mo7O24 was selected, the counter cations of the produced POMs were ammonium ions, which resulted in the existence of clusters in the discrete state. Additionally, with the modulation of the pH of the solutions, the modified sites of triol ligands on the cluster can be controlled to form δ- or χ-isomers. By applying MoO3 in the same reaction, Cu2+ ions served as linkers to connect triol-ligand modified polyanions into chains. When Na4Mo8O26 was employed as the Mo source to react with triol ligands in the presence of CuCl2, two 2-D networks were obtained with {Na4(H2O)14} or {{Na2(H2O)4} sub-clusters as linkers, where the building blocks were δ/δ- and χ/χ-isomers, respectively. The present investigation reveals that the charges, sizes and coordination manners of the counter cations have an obvious influence on the assembled structure of polyanions.