Worldwide, many wheelchair users find it difficult to use or acquire a wheelchair that is appropriate for them, either because they do not have the necessary financial support or because they do not have access to trained healthcare professionals (HCPs), but they are essential for the correct provision of assistive products and user training. Consequently, although wheelchairs are designed to promote the well-being of many users, in many cases, they end up being abandoned or do not provide any benefit, with the chance of causing harm and potentially putting people in danger. This article proposes the creation and use of a Digital Twin (DT) of a Power Wheelchair (PWC) to promote the health of wheelchair users, by facilitating and improving the delivery of remote services by HCPs, as well as to include monitoring services to support timely maintenance. Specifically, a DT is a virtual counterpart that is seamlessly linked to a physical asset, both relying on data and information exchange for mirroring each other. Currently, DT is emerging and being applied to different areas as a promising approach to gather insightful data, which are shared between the physical and virtual worlds and facilitate the means to design, monitor, analyze, optimize, predict, and control physical entities. This article gives an overview of the Digital Twin concept, namely its definition, types, and properties, and seeks to synthesize the technologies and tools frequently used to enable Digital Twins; we also explain how a DT can be used in the technical phases of the PWC provision process and propose a conceptual model highlighting the use of an MDD approach benefiting from a Petri net formalism, which is presented to systematize the development of a PWC DT.