We propose a new heel-contact toe-off walking model based on the Linear Inverted Pendulum (LIP) model, which due to the linearity and the ease of manipulation of the equations, could be considered to be advantageous for a future online implementation for the generation of walking patterns. This new model is based on the so called functional rockers of the foot (heel, ankle and forefoot rockers), each of which are modeled as an inverted pendulum, changing the ground contact point position of the inverted pendulums for each rocker. We focus on the motion of the Center of Mass (CoM) in the sagittal plane, as it is the plane on which the rockers take place, but also generate the motions on the frontal plane. The model proved to work for constant velocity, accelerating and decelerating gaits, and the effects of the change of pivot point during heel-contact toe-off could be corroborated in the Zero Moment Point (ZMP) graphs. The implementation of this model could improve the human likeness of the motions, as well as the stability of the locomotion.