With the gradual popularization of self-driving, it is becoming increasingly important for vehicles to smartly make the right driving decisions and autonomously obey traffic rules by correctly recognizing traffic signs. However, for machine learning-based traffic sign recognition on the Internet of Vehicles (IoV), a large amount of traffic sign data from distributed vehicles is needed to be gathered in a centralized server for model training, which brings serious privacy leakage risk because of traffic sign data containing lots of location privacy information. To address this issue, we first exploit privacypreserving federated learning to perform collaborative training for accurate recognition models without sharing raw traffic sign data. Nevertheless, due to the limited computing and energy resources of most devices, it is hard for vehicles to continuously undertake complex artificial intelligence tasks. Therefore, we introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training, which is the next generation of neural networks and is practical and well-fitted to IoV scenarios. Furthermore, we design a novel encoding scheme for SNNs based on neuron receptive fields to extract information from the pixel and spatial dimensions of traffic signs to achieve high-accuracy training. Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.