Layered transition metal (TM) oxides of the stoichiometry NaxMO2 (M = TM) have shown great promise in sodium‐ion batteries (SIBs); however, they are extremely sensitive to moisture. To date, most reported titanium‐based layered anodes exhibit a P2‐type structure. In contrast, O3‐type compounds are rarely investigated and their synthesis is challenging due to their higher percentage of unstable Ti3+ than the P2 type. Here, a pure phase and highly crystalline O3‐type Na0.73Li0.36Ti0.73O2 with high performance is successfully proposed in SIBs. This material delivers a reversible capacity of 108 mAh g−1 with a stable and safe potential of 0.75 V versus Na/Na+. In situ X‐ray diffraction reveals that this material does not undergo any phase transitions and exhibits a near‐zero volume change upon Na+ insertion/de‐insertion, which ensures exceptional long cycle life over 6000 cycles. Importantly, it is found that this O3‐Na0.73Li0.36Ti0.73O2 shows superior moisture stability, even when immersed into water, which are both elusive for conventional layered TM oxides in SIBs. It is believed that the small interlayer distance and high occupation of interlayer vacancy promise such unprecedented water stability.