Liss 2020 2021
DOI: 10.1007/978-981-33-4359-7_53
|View full text |Cite
|
Sign up to set email alerts
|

Towards Fully-Synthetic Training for Industrial Applications

Abstract: This paper proposes a scalable approach for synthetic image generation of industrial objects leveraging Blender for image rendering. In addition to common components in synthetic image generation research, three novel features are presented: First, we model relations between target objects and randomly apply those during scene generation (Object Relation Modelling (ORM)). Second, we extend the idea of distractors and create Object-alike Distractors (OAD), resembling the textural appearance (i.e. material and s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
6
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 20 publications
(8 citation statements)
references
References 25 publications
0
6
0
2
Order By: Relevance
“…generative adversarial networks) (Dewi et al, 2022) in difuzijski modeli (Pinaya et al, 2022;Akrout et al, 2023) v nasprotju z obdobjem pred tem, ko se je večino sintetičnih slik ustvarilo s programi za grafično upodabljanje. Večina metod (Li et al, 2019) uporablja sintetične slike kot podaljšek učne množice, ki je sestavljena samo iz resničnih slik, nekaj pa jih zgradi celotno učno množico iz sintetičnih slik (Mayershofer et al, 2021;Mayer et al, 2016) in nato naredi premik domene z uporabo resničnih slik za doučenje (Wang et al, 2019;Richter et al, 2016) nevronske mreže.…”
Section: Sorodna Delaunclassified
See 1 more Smart Citation
“…generative adversarial networks) (Dewi et al, 2022) in difuzijski modeli (Pinaya et al, 2022;Akrout et al, 2023) v nasprotju z obdobjem pred tem, ko se je večino sintetičnih slik ustvarilo s programi za grafično upodabljanje. Večina metod (Li et al, 2019) uporablja sintetične slike kot podaljšek učne množice, ki je sestavljena samo iz resničnih slik, nekaj pa jih zgradi celotno učno množico iz sintetičnih slik (Mayershofer et al, 2021;Mayer et al, 2016) in nato naredi premik domene z uporabo resničnih slik za doučenje (Wang et al, 2019;Richter et al, 2016) nevronske mreže.…”
Section: Sorodna Delaunclassified
“…V industrijski domeni (Mayershofer et al, 2021;Eversberg et al, 2021;Abou et al, 2022;Quattrocchi et al, 2022) pogosto pride do uporabe sintetičnih slik, saj je pogosto zajemanje in označevanje velike količine slik drago in zamudno. Velika večina pristopov ustvari sintetične slike na podoben način.…”
Section: Sorodna Delaunclassified
“…Supervised deep learning methods applied to images have demonstrated their potential in extracting image features to support various image analysis tasks. Many of the techniques that have shown success in logistics applications, such as image segmentation for parcel [5,6] and packaging recognition [7,8], have the potential to be applied in the medical image domain as well. These techniques leverage underlying algorithms and rely on abundant labeled data which is costly [9], underscoring their efficacy and promise [10,11].…”
Section: Related Workmentioning
confidence: 99%
“…The second main approach generating synthetic training data is Domain Randomization (DR) [14,21,29]. The idea is to make reality appear as just another synthetic modification of the training images.…”
Section: Related Workmentioning
confidence: 99%