We extend the explicit hybrid numerical method for solving the Allen–Cahn (AC) equation to the scheme for the nonlocal AC equation with isotropically symmetric interfacial energy. The proposed method combines the previous explicit hybrid method with a space-time dependent Lagrange multiplier which enforces conservation of mass. We perform numerical tests for the area-preserving mean curvature flow, which is the basic property of the nonlocal AC equation. The numerical results show good agreement with the theoretical solutions. Furthermore, to demonstrate the usefulness of the proposed method, we perform a cell growth simulation in a complex domain. Because the proposed numerical scheme is explicit, it is remarkably simple to implement the numerical solution algorithm on complex discrete domains.