Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Els models computacionals del cor són una eina important que pot donar als investigadors biomèdics una font addicional d’informació per entendre el funcionament del miocardi. Els models numèrics poden ajudar a interpretar dades experimentals i proporcionar informació complementària sobre mecanismes cardíacs que no poden ser determinats amb precisió mitjançant dispositius clínics clàssics. En aquesta tesi, s’apliquen tècniques de computació a gran escala per construir una eina computacional capaç d’executar-se en paral•lel en milers de processadors, permetent simulacions d’alta fidelitat en malles fines. Per simular el bombeig del cor, s’utilitza un esquema d’acoblament explícit entre les equacions electrofisiològiques en tres dimensions i la formulació en mecànica de sòlids. Per trobar la solució numèrica, s’utilitza el mètode d’elements finits. A més, s’implementen tècniques en assimilació de dades per a l’estimació efectiva dels paràmetres electrofisiològics i mecànics rellevants que apareixen a les equacions, la qual cosa ´es un pas crucial cap a un model cardíac sensible a cada pacient. El codi computacional s’aplica per simular problemes físics reals. S’estudia la propagació electromecànica en una geometria de conill, on es prova la sensibilitat del model a les variacions d’entrada. En particular, l’eina de càlcul s’utilitza per avaluar la influència del camp de fibres cardíaques en la contracció del teixit. Per desenvolupar una simulació cardíaca útil per a fins clínics, el model requereix la integració i combinació de la mecànica computacional i les tècniques de processament d’imatge més recents. El model resultant pot ser la base d’estudis teòrics sobre mecanismes de patologies, oferint als investigadors i cardiòlegs pistes addicionals per comprendre el funcionament del cor. Pot ajudar a la planificació de cirurgia i modelització, com és la predicció dels efectes de compostos farmacològics en el ritme cardíac o l’estudi de l’efecte de medicaments. Aquest projecte només és possible en un equip multidisciplinar, on grups especialitzats uneixen les seves forces en les respectives disciplines: cardiòlegs, investigadors imatge, bioenginyers i científics de la computació. El present model computacional del cor és un pas més cap a la creació d’un laboratori cardíac virtual. A cardiac computational model is a relevant tool that can give biomedical researchers an additional source of information to understand how the heart works. Numerical models can help to interpret experimental data and provide information about cardiac mechanisms that can not be determined accurately by classical clinical devices. In this thesis, High Performance Computing (HPC) techniques are used to build a cardiac computational tool, which is capable of running in parallel in thousands of processors, bioengineers and computational scientists. The present cardiac computational model is one further step towards the creation of a virtual lab, allowing high fidelity simulations on fine meshes. To simulate the pumping heart, an explicit coupling scheme between the three-dimensional electrophysiological equations and the solid mechanics formulation is used, solving the governing equations with finite element methods. Also, data assimilation techniques are implemented for the effective estimation of some relevant electrophysiological parameters, which is a crucial step towards the patient-sensitive cardiac model. The data assimilation techniques are assessed on synthetic data generated by the model. Finally, the computational code is applied to simulate real physical problems. The electromechanical propagation in a rabbit geometry is studied to test the sensitivity of the framework to input variations. Particularly, the computational tool is used to evaluate the influence of the fiber field in the contraction of the tissue. To develop a cardiac simulation useful for clinical purposes, the integrative model requires combining computational mechanics and image processing techniques via data assimilation methods. Coupled with the most advanced image processing analysis, the framework can be the base of theoretical studies into the mechanisms of cardiac pathologies. It can help surgery planning and cardiac modeling, such as the prediction of the impact of pharmacological compounds on the heart’s rhythm or to improve the knowledge of drug study, giving medical researchers additional hints to understand the heart. This realization is only possible in a multidisciplinary team, where specialized groups join forces in their respective disciplines: cardiologists, image researchers, bioengineers and computational scientists. The present cardiac computational model is one further step towards the creation of a virtual lab
Els models computacionals del cor són una eina important que pot donar als investigadors biomèdics una font addicional d’informació per entendre el funcionament del miocardi. Els models numèrics poden ajudar a interpretar dades experimentals i proporcionar informació complementària sobre mecanismes cardíacs que no poden ser determinats amb precisió mitjançant dispositius clínics clàssics. En aquesta tesi, s’apliquen tècniques de computació a gran escala per construir una eina computacional capaç d’executar-se en paral•lel en milers de processadors, permetent simulacions d’alta fidelitat en malles fines. Per simular el bombeig del cor, s’utilitza un esquema d’acoblament explícit entre les equacions electrofisiològiques en tres dimensions i la formulació en mecànica de sòlids. Per trobar la solució numèrica, s’utilitza el mètode d’elements finits. A més, s’implementen tècniques en assimilació de dades per a l’estimació efectiva dels paràmetres electrofisiològics i mecànics rellevants que apareixen a les equacions, la qual cosa ´es un pas crucial cap a un model cardíac sensible a cada pacient. El codi computacional s’aplica per simular problemes físics reals. S’estudia la propagació electromecànica en una geometria de conill, on es prova la sensibilitat del model a les variacions d’entrada. En particular, l’eina de càlcul s’utilitza per avaluar la influència del camp de fibres cardíaques en la contracció del teixit. Per desenvolupar una simulació cardíaca útil per a fins clínics, el model requereix la integració i combinació de la mecànica computacional i les tècniques de processament d’imatge més recents. El model resultant pot ser la base d’estudis teòrics sobre mecanismes de patologies, oferint als investigadors i cardiòlegs pistes addicionals per comprendre el funcionament del cor. Pot ajudar a la planificació de cirurgia i modelització, com és la predicció dels efectes de compostos farmacològics en el ritme cardíac o l’estudi de l’efecte de medicaments. Aquest projecte només és possible en un equip multidisciplinar, on grups especialitzats uneixen les seves forces en les respectives disciplines: cardiòlegs, investigadors imatge, bioenginyers i científics de la computació. El present model computacional del cor és un pas més cap a la creació d’un laboratori cardíac virtual. A cardiac computational model is a relevant tool that can give biomedical researchers an additional source of information to understand how the heart works. Numerical models can help to interpret experimental data and provide information about cardiac mechanisms that can not be determined accurately by classical clinical devices. In this thesis, High Performance Computing (HPC) techniques are used to build a cardiac computational tool, which is capable of running in parallel in thousands of processors, bioengineers and computational scientists. The present cardiac computational model is one further step towards the creation of a virtual lab, allowing high fidelity simulations on fine meshes. To simulate the pumping heart, an explicit coupling scheme between the three-dimensional electrophysiological equations and the solid mechanics formulation is used, solving the governing equations with finite element methods. Also, data assimilation techniques are implemented for the effective estimation of some relevant electrophysiological parameters, which is a crucial step towards the patient-sensitive cardiac model. The data assimilation techniques are assessed on synthetic data generated by the model. Finally, the computational code is applied to simulate real physical problems. The electromechanical propagation in a rabbit geometry is studied to test the sensitivity of the framework to input variations. Particularly, the computational tool is used to evaluate the influence of the fiber field in the contraction of the tissue. To develop a cardiac simulation useful for clinical purposes, the integrative model requires combining computational mechanics and image processing techniques via data assimilation methods. Coupled with the most advanced image processing analysis, the framework can be the base of theoretical studies into the mechanisms of cardiac pathologies. It can help surgery planning and cardiac modeling, such as the prediction of the impact of pharmacological compounds on the heart’s rhythm or to improve the knowledge of drug study, giving medical researchers additional hints to understand the heart. This realization is only possible in a multidisciplinary team, where specialized groups join forces in their respective disciplines: cardiologists, image researchers, bioengineers and computational scientists. The present cardiac computational model is one further step towards the creation of a virtual lab
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.