Abstract-Simulators are powerful tools for reasoning about a robot's interactions with its environment. However, when simulations diverge from reality, that reasoning becomes less useful. In this paper, we show how to close the loop between liquid simulation and real-time perception. We use observations of liquids to correct errors when tracking the liquid's state in a simulator. Our results show that closed-loop simulation is an effective way to prevent large divergence between the simulated and real liquid states. As a direct consequence of this, our method can enable reasoning about liquids that would otherwise be infeasible due to large divergences, such as reasoning about occluded liquid.