The carbon content of mesostructured organic-inorganic hybrid material of a cylindrical block copolymer template of poly(2-vinylpyridine)-block-poly(allyl methacrylate) (P2VP-b-PAMA) and ammonium paramolybdate (APM) could be reduced by thermal depolymerization. By calcination in vacuo at 320 degrees C the PAMA core can be completely removed while the remaining P2VP brush preserves the mesostructure. The P2VP-APM composite can then be carburized in-situ to MoOxCy in a second pyrolysis step without any additional carbon source but P2VP. The molybdenum oxycarbide nanotubes obtained, form hierarchically porous non-woven structures, which were tested as catalyst in the decomposition of NH3. They proved to be catalytically active at temperatures above 450 degrees C. The activation energy was estimated from an Arrhenius Plot to be 127 kJmol(-1)