Comfort level in the human body is an index that is always difficult to evaluate in a general and objective manner. Therefore, building owners and managers have been known to adjust environmental physical parameters such as temperature, humidity, and air quality based on people’s subjective sensations to yield satisfactory feelings of comfort. Furthermore, electricity consumption could be reduced by minimizing unnecessary use of heating and cooling equipment based on precise knowledge of comfort levels in interior spaces. To achieve the aforementioned objectives, this study undertook the following four tasks: first, providing visualization and smart suggestion functions to assist building managers and users in analyzing and developing plans based on the demands of space usage and electrical equipment; second, using Internet of Things technology to minimize the difference between real situations and those simulated in building information modeling (BIM); third, accurately evaluating interior environment comfort levels and improving equipment operating efficiency based on quantized comfort levels; and fourth, establishing a persuasive workflow for building energy saving systems. Through developing this system, COZyBIM will help to enhance the satisfactions of comfort level in interior space and operate energy consuming equipment efficiently, to reach the target of energy saving.