The present endeavor is to develop a highly-intelligent catalytic reactor prototype which is able to autonomously adapt to the environment and provides an in-situ double-shift catalytic ability. By seeking inspiration from nature, this objective is achieved by developing a self-adaptive hydrogel catalytic reactor which held a catalytic trilaminar structure capable of reverse thermosensitive properties. With increasing temperatures, the catalytic tri-layers of this catalytic reactor would function in a sequential way (i.e., one negative temperature response layer, one support layer and one positive temperature response layer) and as a result, led to the single-tandem double-shift catalytic ability. This catalytic reactor individually presented single/tandem catalytic process at relatively low temperatures or high temperatures through the cooperative work of the three layers. In this way, this catalytic reactor showed the single-tandem controllable catalytic ability. The novel protocol not only provides a new solution to complicated catalytic processes but also inspires the further application of smart polymers in a broader spectrum of areas.