2018 IEEE 11th International Conference on Cloud Computing (CLOUD) 2018
DOI: 10.1109/cloud.2018.00131
|View full text |Cite
|
Sign up to set email alerts
|

Towards Quantum Computing Algorithms for Datacenter Workload Predictions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
8
0
2

Year Published

2018
2018
2023
2023

Publication Types

Select...
4
3

Relationship

1
6

Authors

Journals

citations
Cited by 9 publications
(10 citation statements)
references
References 17 publications
0
8
0
2
Order By: Relevance
“…Berdasarkan penelitian [1] penulis menemukan bahwa prediksi nilai tukar dapat digunakan untuk mencapai kesuksesan dalam bidang investasi dan bisnis, sehingga perlu 154 Majalah Ilmiah Teknologi Elektro, Vol. 20, No.1, Januari -Juni 2021ISSN 1693-2951 Putu Risanti Iswardani : Peramalan Nilai Tukar Rupiah… diadakan prediksi nilai tukar agar perkiraan keuangan di dalam sebuah bisnis dan investasi dapat diperkirakan secara akurat.…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Berdasarkan penelitian [1] penulis menemukan bahwa prediksi nilai tukar dapat digunakan untuk mencapai kesuksesan dalam bidang investasi dan bisnis, sehingga perlu 154 Majalah Ilmiah Teknologi Elektro, Vol. 20, No.1, Januari -Juni 2021ISSN 1693-2951 Putu Risanti Iswardani : Peramalan Nilai Tukar Rupiah… diadakan prediksi nilai tukar agar perkiraan keuangan di dalam sebuah bisnis dan investasi dapat diperkirakan secara akurat.…”
Section: Pendahuluanunclassified
“…Pada jurnal [1], mengusulkan metode Hidden Markov Model untuk memprdiksi nilai tukar Rupiah terhadap Dollar Amerika. Penelitian tersebut melakukan pengujian Mean Absolute Presentage Error (MAPE) dengan hasil presentasi sebesar 4.13%.…”
Section: Pendahuluanunclassified
“…To deal with these challenges, many prediction techniques based on machine learning are widely used and have proven to be superior to the mathematical algorithms above [6], [8], [9], [23], [24]. Most of them require a training phase based on large-scale historical data.…”
Section: Related Workmentioning
confidence: 99%
“…A feedforward artificial neural network predictor was provided by Duy et al [23] to forecast the workload in a computational grids host. Qazi and Aizenberg [24] proposed a complex-valued neural network datacenter workload prediction approach. Kumar and Singh [8] combined a self-adaptive differential evolution method and an artificial neural network to predict workload in cloud computing systems.…”
Section: Related Workmentioning
confidence: 99%
“…Reliable workload prediction of monitored devices becomes critical in order to proactively manage the capacity of connected infrastructure, mitigate cyber security risks and simply respond early to the anomalous behaviour of the monitored IT infrastructure [1]. Accurate forecasting of the future host workload plays also a central role for robust scheduling and resources management in data centers and cloud computing and among many expected benefits could lead to reduced operational cost, for example in a form of eliminated or cut idle time of the devices [2], [3], [4].…”
Section: Introductionmentioning
confidence: 99%