This paper describes the development of an Advanced Driver Assistance System (ADAS) which will allow drivers to avoid collisions with an oncoming vehicle from an occluded area when turning right at intersections in left-hand traffic. Connected vehicles, in coordination with infrastructure, represent one of the commercialized ADAS technologies for collision avoidance. However, the coverage of the ADAS will be limited to designated intersections only, as communication equipment needs to be installed in both the vehicle and infrastructure to enable the assistance. This paper proposes an ADAS using on-board sensors, independent of infrastructure facilities, to control the vehicle velocity to avoid collisions. Most current intersection assistance, by using an Autonomous Emergency Braking System (AEBS), allows the driver to avoid a collision with oncoming vehicles when there is clear vision without occlusion. However, many accidents occur when the vehicle detects the oncoming vehicle too late because of occlusion in the intersection, such as a vehicle in the opposite lane. This system calculates the hazardous speed criteria of the ego vehicle, which might result in a high risk of collision when darting out occurs, and provides speed control assistance to allow the driver to escape from the hazardous speed region. The simulation results reveal that the proposed system effectively reduces the possibility of collisions compared to conventional AEBS.