2024
DOI: 10.3390/s24134140
|View full text |Cite
|
Sign up to set email alerts
|

Towards Robust Decision-Making for Autonomous Highway Driving Based on Safe Reinforcement Learning

Rui Zhao,
Ziguo Chen,
Yuze Fan
et al.

Abstract: Reinforcement Learning (RL) methods are regarded as effective for designing autonomous driving policies. However, even when RL policies are trained to convergence, ensuring their robust safety remains a challenge, particularly in long-tail data. Therefore, decision-making based on RL must adequately consider potential variations in data distribution. This paper presents a framework for highway autonomous driving decisions that prioritizes both safety and robustness. Utilizing the proposed Replay Buffer Constra… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 52 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?