Towards Scalable Verification of Deep Reinforcement Learning
Guy Amir,
Michael Schapira,
Guy Katz
Abstract:Deep neural networks (DNNs) have gained significant popularity in recent years, becoming the state of the art in a variety of domains. In particular, deep reinforcement learning (DRL) has recently been employed to train DNNs that act as control policies for various types of real-world systems. In this work, we present the whiRL 2.0 tool, which implements a new approach for verifying complex properties of interest for such DRL systems. To demonstrate the benefits of whiRL 2.0, we apply it to case studies from t… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.