2019 IEEE International Conference on Artificial Intelligence Testing (AITest) 2019
DOI: 10.1109/aitest.2019.00-12
|View full text |Cite
|
Sign up to set email alerts
|

Towards Structured Evaluation of Deep Neural Network Supervisors

Abstract: Deep Neural Networks (DNN) have improved the quality of several non-safety related products in the past years. However, before DNNs should be deployed to safety-critical applications, their robustness needs to be systematically analyzed. A common challenge for DNNs occurs when input is dissimilar to the training set, which might lead to high confidence predictions despite proper knowledge of the input.Several previous studies have proposed to complement DNNs with a supervisor that detects when inputs are outsi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
37
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 39 publications
(38 citation statements)
references
References 25 publications
1
37
0
Order By: Relevance
“…Six of them leverage anomaly detection techniques to identify unexpected execution contexts during the operation of MLSs (Henriksson et al 2019;Patel et al 2018;Aniculaesei et al 2018;Bolte et al 2019;Zhang et al 2018b), whereas two papers are related to online risk assessment and failure probability estimation for MLSs (Strickland et al 2018;Uesato et al 2019).…”
Section: Online Monitoring and Validation Eight Work Address The Promentioning
confidence: 99%
See 4 more Smart Citations
“…Six of them leverage anomaly detection techniques to identify unexpected execution contexts during the operation of MLSs (Henriksson et al 2019;Patel et al 2018;Aniculaesei et al 2018;Bolte et al 2019;Zhang et al 2018b), whereas two papers are related to online risk assessment and failure probability estimation for MLSs (Strickland et al 2018;Uesato et al 2019).…”
Section: Online Monitoring and Validation Eight Work Address The Promentioning
confidence: 99%
“…Figure 7 illustrates graphically the paper distribution across testing levels. Five works (7%) manipulate only the input data, i.e., they perform input level testing (Bolte et al 2019;Byun et al 2019;Henriksson et al 2019;Wolschke et al 2018). The majority of the papers (64%) operate at the ML model level (model level testing) (Cheng et al 2018a;Ding et al 2017;Du et al 2019;Dwarakanath et al 2018;Eniser et al 2019;Gopinath et al 2018;Groce et al 2014;Guo et al 2018;Kim et al 2019;Li et al 2018;Ma et al 2018bMa et al , c, d, 2019Murphy et al 2007aMurphy et al , b, 2008Murphy et al , b, 2009Nakajima and Bui 2016, 2019Odena et al 2019;Patel et al 2018;Pei et al 2017;Qin et al 2018;Saha and Kanewala 2019;Sekhon and Fleming 2019;Shen et al 2018;Shi et al 2019;Spieker and Gotlieb 2019;Strickland et al 2018;Sun et al 2018a, b;Tian et al 2018;Udeshi and Chattopadhyay 2019;Udeshi et al 2018;Uesato et al 2019;Xie et al 2018Xie et al , 2019Xie et al , 2011Zhang et al 2018a…”
Section: Cost Of Testingmentioning
confidence: 99%
See 3 more Smart Citations