Along with analysis and practical implementation, simulations play a key role in wireless networks and computational offloading research for several reasons. First, the simulations provide the ability to easily obtain the data for a complex system's model evaluation. Secondly, simulated data provides a controlled environment for experimentation, allowing models and algorithms to be tested for robustness and identifying potential limitations before deploying them in real-world applications. Choosing the most appropriate tool for simulation might be challenging and depends on several factors, such as the main purpose, complexity of data, researcher skills, community support, and available budget. As of the time of the present analysis, several system-level open-source tools for modeling computational offloading also cover the systems' communications side, such as CloudSim, CloudSim Plus, IoTSim-Edge, EdgeCloudSim, iFogSim2, PureEdgeSim, and YAFS. This work presents an evaluation of those based on the unique features and performance results of intensive workload-and delay-tolerant scenarios: XR with an extremely high data rate and workload; remote monitoring with a low data rate with moderate delays and workload requirements; and data streaming as a general human traffic with a relatively high bit rate but moderate workload. The work concludes that CloudSim provides a reliable environment for virtualization on the host resources, while YAFS shows minimal hardware usage, while IoTSim-Edge, PureEdgeSim, and EdgeCloudSim have fewer implemented features.