Novel multifunctional scaffolds for bone regeneration can be developed by incorporation of bioactive glasses (BG) doped with therapeutic and antibacterial metal ions, such as copper (Cu) and zinc (Zn), into a biodegradable polymer. In this context, porous composite materials of biodegradable poly(d, l-lactide) (PDLLA) mixed with sol-gel BG of chemical composition 60SiO ; 25CaO; 11Na O; and 4P O (mol %) doped with either 1 mol % of CuO or ZnO, and with both metals, were prepared. The cytocompatibility of the scaffolds on bone marrow stromal cells (ST-2) depended on both, the amount of glass filler and the concentration of metal ion, as evaluated by lactate dehydrogenase (LDH) activity, cell viability (water-soluble tetrazolium salt [WST-8]), and by cell morphology (scanning electron microscopy [SEM]) tests. In particular, scaffolds having a filler content of 10 wt % showed the highest cytocompatibility. In addition, compared to the neat polymer, the scaffolds containing Cu promoted the angiogenesis marker (Vascular endothelial growth factor concentration) to a larger extent while scaffolds containing Zn increased the osteogenesis marker (specific alkaline phosphatase-activity). Noteworthy, the scaffolds with both metal ions showed a combined effect on both properties. Cu- and Zn-doped glasses also provided higher antibacterial capacity to PDLLA-based scaffolds against methicillin-resistant S. aureus bacteria than undoped glass. In combination, our results showed that by a proper addition of Cu- and Zn-doped BG to a PDLLA matrix, multifunctional composite scaffolds with enhanced biological activity can be designed for bone tissue regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 746-756, 2017.