Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Bio-systems are inherently complex information processing systems. Their physiological complexities limit the formulation and testing of a hypothesis for their behaviour. Our goal here was to test a computational framework utilising published data from a longitudinal study of patients with acute myeloid leukaemia (AML), whose DNA from both normal and malignant tissues were subjected to NGS analysis at various points in time. By processing the sequencing data before relapse time, we tested our framework by predicting the regions of the genome to be mutated at relapse time and, later, by comparing our results with the actual regions that showed mutations (discovered by genome sequencing at relapse time). After a detailed statistical analysis, the resulting correlation coefficient (degree of matching of proposed framework with real data) is 0.9816 ± 0.009 at 95% confidence interval. This high performance from our proposed framework opens new research opportunities for bioinformatics researchers and clinical doctors.
Bio-systems are inherently complex information processing systems. Their physiological complexities limit the formulation and testing of a hypothesis for their behaviour. Our goal here was to test a computational framework utilising published data from a longitudinal study of patients with acute myeloid leukaemia (AML), whose DNA from both normal and malignant tissues were subjected to NGS analysis at various points in time. By processing the sequencing data before relapse time, we tested our framework by predicting the regions of the genome to be mutated at relapse time and, later, by comparing our results with the actual regions that showed mutations (discovered by genome sequencing at relapse time). After a detailed statistical analysis, the resulting correlation coefficient (degree of matching of proposed framework with real data) is 0.9816 ± 0.009 at 95% confidence interval. This high performance from our proposed framework opens new research opportunities for bioinformatics researchers and clinical doctors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.