In response to the challenge of low accuracy in node trust evaluation due to the high dynamics of entry and exit of drone cluster nodes, we propose a hierarchical blockchain-based trust measurement method for drone cluster nodes. This method overcomes the difficulties related to trust inheritance for dynamic nodes, trust re-evaluation of dynamic clusters, and integrated trust calculation for drone nodes. By utilizing a multi-layer unmanned cluster blockchain for trusted historical data storage and verification, we achieve scalability in measuring intermittent trust across time intervals, ultimately improving the accuracy of trust measurement for drone cluster nodes. We design a resource-constrained multi-layer unmanned cluster blockchain architecture, optimize the computing power balance within the cluster, and establish a collaborative blockchain mechanism. Additionally, we construct a dynamic evaluation method for trust in drone nodes based on task perception, integrating and calculating the comprehensive trust of drone nodes. This approach addresses trusted sharing and circulation of task data and resolves the non-inheritability of historical data. Experimental simulations conducted using NS3 and MATLAB demonstrate the superior performance of our trust value measurement method for unmanned aerial vehicle cluster nodes in terms of accurate malicious node detection, resilience to trust value fluctuations, and low resource delay retention.