Solar chimney power plants (SCPPs) are encouraging sustainable energy sources due to their low cost, abundance, low maintenance, and eco-friendliness. However, despite significant efforts to optimize SCPP design, their efficiency and power generation capabilities remain limited. Researchers have explored modifications in plant geometry and hybridization to improve efficiency. Despite extensive work in this area, commercialization of SCPPs has not yet been achieved. Most of the research is numerical and may differ from real-world practical use. The number of experimental studies is also relatively small. To facilitate commercialization, further investigation with practical and feasible dimensions is required. This comprehensive review paper aims to provide an in-depth analysis of experimental approaches and advancements in the field of SCPPs. The paper begins with an introduction, highlighting the background, significance, and objectives of the review. It provides an overview of the plants, discussing their principles and operation as innovative renewable energy systems. The historical development and evolution of solar chimneys are explored, shedding light on their progression over time. Case studies of operational hybrid SCPPs are examined to showcase real-world applications and performance. The paper also addresses environmental impacts and sustainability considerations associated with SCPPs. Furthermore, recommendations for future research and development in this field are provided to guide researchers and industry professionals. This study focuses on the possibility of commercialization of both standalone and hybrid SCPPs.