Uterine secretions, or histotroph, are a critical component for early embryo survival, functioning as the sole supply of vitamins, minerals, enzymes, and other myriad of nutrients required by the developing conceptus before implantation. Histotroph is therefore a promising source for biomarkers of uterine function and for enhancing our understanding of the environment supporting early embryo development and survival. Utilizing label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomics, we characterized the uterine proteome at two key preimplantation stages of the estrous cycle in high fertility cattle. We identified 300 proteins on Day 7 and 510 proteins on Day 13 including 281 proteins shared between days. Five proteins were more abundant (P < 0.05) on Day 7 compared with Day 13 and included novel histotroph proteins cytokeratin 10 and stathmin. Twenty-nine proteins were more abundant (P < 0.05) including 13 unique on Day 13 compared with Day 7 and included previously identified legumain, metalloprotease inhibitor-2, and novel histotroph proteins chromogranin A and pyridoxal kinase. Functional analysis of the 34 differentially expressed proteins (including 14 novel to histotroph) revealed distinct biological roles putatively involved in early pregnancy, including remodelling of the uterine environment in preparation for implantation; nutrient metabolism; embryo growth, development and protection; maintenance of uterine health; and maternal immune modulation. This study is the first reported LC-MS/MS based global proteomic characterization of the uterine environment in any domesticated species before implantation and provides novel information on the temporal alterations in histotroph composition during critical stages for early embryo development and uterine function during the early establishment of pregnancy.