The Monterrey metropolitan area (MMA) is the third greatest urban area and the second largest economic city of Mexico. More than four million people living in this megacity use groundwater for drinking, industrial and household purposes. Thus, major ion and trace element content were assessed in order to investigate the main hydrochemical properties of groundwater and determine if groundwater of the area poses a threat to the MMA population. Hierarchical cluster analysis using all the groundwater chemical data showed five groups of water. The first two groups were classified as recharge waters (Ca-HCO3) coming from the foothills of mountain belts. The third group was also of Ca-HCO3 water type flowing through lutites and limestones. Transition zone waters of group four (Ca-HCO3-SO4) flow through the valley of Monterrey, whereas discharge waters of group 5 (Ca-SO4) were found toward the north and northeast of the MMA. Principal component analysis performed in groundwater data indicates four principal components (PCs). PC1 included major ions Si, Co, Se, and Zn, suggesting that these are derived by rock weathering. Other trace elements such as As, Mo, Mn, and U are coupled in PC2 because they show redox-sensitive properties. PC3 indicates that Pb and Cu could be the less mobile elements in groundwater. Although groundwater supplied to MMA showed a high-quality, high mineralized waters of group 5 have NO3
− concentrations higher than the maximum value proposed by international guidelines and SO4
2−, NO3
−, and total dissolved solid concentrations higher than the maximum levels allowed by the Mexican normative.