The majority of the currently available insecticides target the nervous system and genetic mutations of invertebrate neural proteins oftentimes yield deleterious consequences, yet the current methods for recording nervous system activity of an individual animal is costly and laborious. This suction electrode preparation of the third-instar larval central nervous system of Drosophila melanogaster, is a tractable system for testing the physiological effects of neuroactive agents, determining the physiological role of various neural pathways to CNS activity, as well as the influence of genetic mutations to neural function. This ex vivo preparation requires only moderate dissecting skill and electrophysiological expertise to generate reproducible recordings of insect neuronal activity. A wide variety of chemical modulators, including peptides, can then be applied directly to the nervous system in solution with the physiological saline to measure the influence on the CNS activity. Further, genetic technologies, such as the GAL4/UAS system, can be applied independently or in tandem with pharmacological agents to determine the role of specific ion channels, transporters, or receptors to arthropod CNS function. In this context, the assays described herein are of significant interest to insecticide toxicologists, insect physiologists, and developmental biologists for which D. melanogaster is an established model organism. The goal of this protocol is to describe an electrophysiological method to enable the measurement of electrogenesis of the central nervous system in the model insect, Drosophila melanogaster, which is useful for testing a diversity of scientific hypotheses. | 141 | e58375 | Page 4 of 9 4. Perform statistical analysis (e.g., unpaired t-test) to determine significance between time points, concentrations, or drug treatments. NOTE: There are two primary methods for generating and analyzing concentration-response curves. The first method is one concentration per individual preparation. Here, the spike rate of the single concentration is normalized to baseline spike rate for each preparation. The benefits are reduced run down of the preparation due to shortened recording time, while the pitfalls are increased dissection time because this method will consist of 5-7 individual CNS preparations per concentration, and larger error bars on the averaged data set. The second method is multiple concentrations per individual preparation. Here, the spike rate for each of the 3-5 concentrations are normalized to the same baseline spike rate. The benefits are less dissection time and less variability between replicates for drug concentrations, while the pitfalls are the requirement of a fast-acting drug and unknown impact of previous drug concentration treatments on subsequent chemical treatments. 30