The potential of remobilization of pollutants is a major problem for anthropogenic ecosystems, because even when the anthropogenic source of pollution is identified and removed, pollutants stored in sediments can be released into the water column and impact pelagic communities during sediment resuspension provoked by dredging, storms or bottom trawling. The objectives of the present study were to assess the changes observed in the chemical composition of the water column following resuspension of a polluted marine sediment and the consequences for the chemical composition of adjacent marine waters according to season. For that purpose, an experimental sediment resuspension protocol was performed on four distinct occasions, spring, summer, fall and winter, and the changes in nutrients, organic contaminants and inorganic contaminants were measured after mixing sediment elutriate with lagoon waters and offshore waters sampled nearby. Significant seasonal variations in the chemical composition of the contaminated sediments were observed, with a strong accumulation of PAHs in fall, whereas minimum PAH concentrations were observed during winter. In all seasons, sediment resuspension provoked a significant enrichment in nutrients, dissolved organic carbon, and trace metal elements like Ni, Cu, and Zn in offshore waters and lagoon waters, with enrichment factors that were season and site dependent. The most pronounced changes were observed for offshore waters, especially in spring and winter, whereas the chemical composition of lagoon waters was weakly impacted by the compounds supplied by sediment resuspension.