The present study aimed to obtain insights into the mechanism(s) by which glucose-rich diet aggravates monocrotophos (MCP)-induced dopaminergic neuronal dysfunction in Caenorhabditis elegans. In this study, we exposed three different strains of worms (wild-type N2, CB1112 (cat-2(e1112)II, tyrosine hydroxylase-deficient mutant, catecholamine absent) and the transgenic BZ555 (egls1-dat-1p::green fluorescent protein [GFP]) (in which bright GFP is tagged to the dopamine neuronal soma and processes) grown and maintained in normal nematode growth medium or 2% glucose enriched-nematode growth medium to MCP (0.75 mm) for 48 h. After the exposure, dopamine-mediated behaviors such as repulsion to nonanone, chemotaxis index and basal slowing response were determined in worms. Dopamine, 3,4-dihydroxy phenyl acetic acid and homovanillic acid content were quantified in N2 worms. The extent of neurodegeneration was visualized and quantified in dat-1::GFP worms. Basal slowing response study clearly indicated that cat-2 worms exposed to MCP and glucose were less affected compared to N2 of the same treatment. Learning and memory were affected by MCP and glucose. While MCP-treated worms showed lesser repulsion to nonanone compared to control worms, MCP-treated, glucose-fed worms showed a greater reduction in repulsion to nonanone. Further, MCP-treated, glucose-fed worms exhibited a marked reduction in dopamine content and an increase in 3,4-dihydroxy phenyl acetic acid and homovanillic acid levels compared to that in control. Dat-1::GFP showed a significant degeneration of dopaminergic neurons when exposed to glucose and MCP. Thus, our results clearly demonstrate that glucose-rich diet aggravates the dopaminergic neuronal dysfunction induced by MCP in C. elegans. Copyright © 2016 John Wiley & Sons, Ltd.