Fluoroquinolones (FQs) and tetracyclines (TCs), the two b-diketone antibiotics (DKAs), are two frequently detected pollutants in the environment; however, little data are available on their combined toxicity to zebrafish (Danio rerio). This study reports that toxicologic effects of combined DKA (FQs-TCs) exposure on zebrafish were comparable with or slightly less than those of TCs alone, showing that TCs played a major toxicologic role in the mixtures. The effects of FQs, TCs, and DKAs on malformation rates of zebrafish were dose dependent, with EC 50 values of 481.3, 16.4, and 135.1 mg/L, respectively. According to the combined effects of DKAs on zebrafish hatching, mortality, and malformation rates, the interaction between FQs and TCs was shown to be antagonistic based on three assessment methods: Toxic Unit, Additional Index, and Mixture Toxic Index. The 1.56 mg/L TC and 9.38 mg/L DKA treatments resulted in higher zebrafish basal swimming rate compared with the control group at 120 hours postfertilization (hpf). in both light and light-to-dark photoperiod experiments. Under conditions of no obvious abnormality in cardiac development, the heart beats were decreased significantly because of DKA exposure, such as decreasing by 20% at 150 mg/L DKAs. Transmission electron microscopy observation of myocytes from DKA-exposed hearts displayed prominent interruptions and myofibrillar disorganization of the normal parallel alignment of thick and thin filaments, and partial edematous and dissolved membranes of cell nuclear tissues. At 90 mg/L DKAs, the transcriptional levels of the acta1a, myl7, and gle1b genes, related to heart development and skeletal muscle formation, were significantly changed. This is consistent with the swimming behavior and histopathologic results obtained by transmission electron microscopy. In summary, the toxicity of the combined DKAs to zebrafish was comparable with or less than that of TCs