2024
DOI: 10.1002/jat.4591
|View full text |Cite
|
Sign up to set email alerts
|

ToxMPNN: A deep learning model for small molecule toxicity prediction

Yini Zhou,
Chao Ning,
Yijun Tan
et al.

Abstract: Machine learning (ML) has shown a great promise in predicting toxicity of small molecules. However, the availability of data for such predictions is often limited. Because of the unsatisfactory performance of models trained on a single toxicity endpoint, we collected toxic small molecules with multiple toxicity endpoints from previous study. The dataset comprises 27 toxic endpoints categorized into seven toxicity classes, namely, carcinogenicity and mutagenicity, acute oral toxicity, respiratory toxicity, irri… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 40 publications
0
0
0
Order By: Relevance