2018
DOI: 10.25046/aj030208
|View full text |Cite
|
Sign up to set email alerts
|

TPMTM: Topic Modeling over Papers’ Abstract

Abstract: Probabilities topic models are active research area in text mining, machine learning, information retrieval, etc. Most of the current statistical topic modeling methods, such as Probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA). They are used to build models from unstructured text and produce a term-based representation to describe a topic by choosing single words from multinomial word distribution. There are two main weaknesses. First, popular or common words are different to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 18 publications
0
0
0
Order By: Relevance